History-driven firefly algorithm for optimisation in dynamic and uncertain environments

نویسندگان

  • Babak Nasiri
  • Mohammad Reza Meybodi
چکیده

Due to dynamic and uncertain nature of many optimisation problems in real-world, the applied algorithm in this environment must be able to continuously track the changing optima over time. In this paper, we report a novel speciation-based firefly algorithm for dynamic optimisation, which improved its performance by employing prior landscape historical information. The proposed algorithm, namely history-driven speciation-based firefly algorithm (HdSFA), uses a binary space partitioning (BSP) tree to capture the important information about the landscape during the optimisation process. By utilising this tree, the algorithm can approximate the fitness landscape and avoid wasting the fitness evaluation for some unsuitable solutions. The proposed algorithm is evaluated on the most well-known dynamic benchmark problem, moving peaks benchmark (MPB), and also on a modified version of it, called MPB with pendulum-like motion among the environments (PMPB), and its performance is compared with that of several state-of-the-art algorithms in the literature. The experimental results and statistical test prove that HdSFA outperforms most of the algorithms in different scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimum Design of Scallop Domes for Dynamic Time History Loading by Harmony Search-Firefly Algorithm

This paper presents an efficient meta-heuristic algorithm for optimization of double-layer scallop domes subjected to earthquake loading. The optimization is performed by a combination of harmony search (HS) and firefly algorithm (FA). This new algorithm is called harmony search firefly algorithm (HSFA). The optimization task is achieved by taking into account geometrical and material nonlinear...

متن کامل

Dynamic Replication based on Firefly Algorithm in Data Grid

In data grid, using reservation is accepted to provide scheduling and service quality. Users need to have an access to the stored data in geographical environment, which can be solved by using replication, and an action taken to reach certainty. As a result, users are directed toward the nearest version to access information. The most important point is to know in which sites and distributed sy...

متن کامل

Optimization in Uncertain and Complex Dynamic Environments with Evolutionary Methods

In the real world, many of the optimization issues are dynamic, uncertain, and complex in which the objective function or constraints can be changed over time. Consequently, the optimum of these issues is changed nonlinearly. Therefore, the optimization algorithms not only should search the global optimum value in the space but also should follow the path of optimal change in dynamic environmen...

متن کامل

Improved speciation-based Firefly Algorithm in dynamic and uncertain environment

Many real-world optimization problems are dynamic in nature. The applied algorithm in this environment can pose serious challenges, especially when the search space is multimodal with multiple, time-varying optima. To address these challenges, this paper investigates a speciation-based firefly algorithm to enhance the population diversity with aim of generating several populations in different ...

متن کامل

Speciation based firefly algorithm for optimization in dynamic environments

In many optimization problems in real world, objective function, design variable or constraints can be changed during time, so optimal value of these problems also can be changed. These kinds of problems are called dynamic. Algorithms which are designed for optimizing in these environments have some principles that distinguish them from algorithms designed in static environment. In this paper, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJBIC

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016